skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Mei-Sen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We study the azimuthal angular decorrelations of dijet production in both proton-proton (pp) and proton-nucleus (pA) collisions. By utilizing soft-collinear effective theory, we establish the factorization and resummation formalism at the next-to-leading logarithmic accuracy for the azimuthal angular decorrelations in the back-to-back limit in pp collisions. We propose an approach where the nuclear modifications to dijet production in pA collisions are accounted for in the nuclear modified transverse momentum dependent parton distribution functions (nTMDPDFs), which contain both collinear and transverse dynamics. This approach naturally generalizes the well-established formalism related to the nuclear modified collinear parton distribution functions (nPDFs). We demonstrate strong consistency between our methodology and the CMS measurements in both pp and pA collisions, and make predictions for dijet production in the forward rapidity region in pA collisions at LHC kinematics and for mid-rapidity kinematics at sPHENIX. Throughout this paper, we focus on the application of this formalism to a simultaneous fit to both collinear and transverse momentum dependent contributions to the transverse momentum dependent distributions. 
    more » « less